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Missense Mutations in the Copper Transporter Gene
ATP7A Cause X-Linked Distal Hereditary Motor Neuropathy

Marina L. Kennerson,1,2,* Garth A. Nicholson,1,2 Stephen G. Kaler,3 Bartosz Kowalski,1

Julian F.B. Mercer,4 Jingrong Tang,3 Roxana M. Llanos,4 Shannon Chu,1 Reinaldo I. Takata,5

Carlos E. Speck-Martins,5 Jonathan Baets,6 Leonardo Almeida-Souza,6 Dirk Fischer,7

Vincent Timmerman,6 Philip E. Taylor,4 Steven S. Scherer,8 Toby A. Ferguson,8 Thomas D. Bird,9,10

Peter De Jonghe,6 Shawna M.E. Feely,11 Michael E. Shy,11 and James Y. Garbern11

Distal hereditary motor neuropathies comprise a clinically and genetically heterogeneous group of disorders. We recently mapped an

X-linked form of this condition to chromosome Xq13.1-q21 in two large unrelated families. The region of genetic linkage included

ATP7A, which encodes a copper-transporting P-type ATPase mutated in patients with Menkes disease, a severe infantile-onset neurode-

generative condition. We identified two unique ATP7A missense mutations (p.P1386S and p.T994I) in males with distal motor neurop-

athy in two families. These molecular alterations impact highly conserved amino acids in the carboxyl half of ATP7A and do not directly

involve the copper transporter’s known critical functional domains. Studies of p.P1386S revealed normal ATP7A mRNA and protein

levels, a defect in ATP7A trafficking, and partial rescue of a S. cerevisiae copper transport knockout. Although ATP7A mutations are typi-

cally associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome, we demonstrate here that certain

missense mutations at this locus can cause a syndrome restricted to progressive distal motor neuropathy without overt signs of systemic

copper deficiency. This previously unrecognized genotype-phenotype correlation suggests an important role of the ATP7A copper trans-

porter in motor-neuron maintenance and function.
Introduction

The distal hereditary motor neuropathies (distal HMNs)

comprise a clinically and genetically heterogeneous group

of disorders predominantly affecting motor neurons in the

peripheral nervous system.1 Affected distal HMN individ-

uals manifest progressive weakness and wasting beginning

in the distal muscles of the limbs and have no notable

sensory symptoms. Distal HMNs have been classified

into seven subgroups based on mode of inheritance, age

of onset, distribution of muscle weakness, and clinical

progression.2 Fifteen genetic loci for distal HMN have

been mapped, and eight genes have been identified.3

These encode a functionally diverse array of gene products,

including a transfer RNA synthetase,4 two heat-shock

proteins,5,6 and a microtubule motor protein involved

in axonal transport.7 A form of distal HMN with linkage

to chromosome Xq13.1-q21 (DSMAX; SMAX3 [MIM

300489]) was reported in a Brazilian family.8 We recently

mapped and refined this locus in a second unrelated North

American family of European descent.9 The 14.2 Mb

region contained more than 50 annotated genes, including

ATP7A (MIM 300011), which encodes a copper-transport-

ing P-type ATPase.9
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Copper is an essential trace metal with potential toxicity

and requires exquisite homeostatic control; its regulation

involves mechanisms governing gastrointestinal uptake,

transport to the developing brain, targeted intracellular

delivery to copper enzymes, and hepatic excretion of cop-

per into the biliary tract.10–13 These functions are largely

fulfilled by a pair of evolutionarily related copper-trans-

porting ATPases, ATP7A and ATP7B (MIM 606882). The

ATP7A gene is mutated in Menkes disease (MK; MNK

[MIM 309400]), a severe infantile-onset developmental

disorder.14–17 An allelic variant, occipital horn syndrome

(OHS [MIM 304150]), is similar in many clinical and

biochemical aspects, although the neurologic phenotype

is far less severe.18,19 Neither condition features overt

motor neuropathy.

In this study, we evaluated the ATP7A copper transporter

in two families whose affected members had X-linked

distal motor neuropathy.

Material and Methods

Subjects
Pedigrees and linkage studies were previously reported for the

North American and Brazilian families. Family A (North American)
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Figure 1. Inheritance Pattern and Clin-
ical Findings in X-Linked Distal Motor
Neuropathy
(A) Pedigrees of family A, modified from
Kennerson et al.,9 and family B, modified
from Takata et al.8 The pedigrees show
the key branches of the families with
affected individuals. Squares indicate
males, and circles indicate females. Solid
symbols denote affected family members,
and open symbols denote unaffected
family members. The hatched circle (III-4
in family A) indicates an asymptomatic
female with minimal clinical signs of
motor neuron disease. Internal dots indi-
cate obligate gene carriers. Asterisks denote
individuals who are confirmed carriers of
the gene mutations and were examined
by one or more of the authors in this study.
Diagonal lines through symbols indicate
deceased individuals.
(B) Clinical findings in X-linked distal
motor neuropathy. Evidence of distal
muscle wasting in a 43-year-old male
(IV-2, family A; Figure 1A) with the
P1386S ATP7A mutation. Both legs
showed decreased mass of the vastus later-
alis (VL), vastus medialis (VM), tibialis ante-
rior (TA), gastrocnemius (G), and soleus (S)
muscles. Both feet showed pes cavus defor-
mities. There was moderate wasting of the
first dorsal interosseus (open arrows) and
the hypothenar (arrow) muscle groups of
the hand. The patient’s hair was normal
in texture and had no pili torti under light
microscopy. The palate showed normal
contour. The thorax showed no defor-
mities, and the cardiac and pulmonary
examinations were normal. The joints
and skin did not show excessive laxity.
Radiographic studies showed no wormian
bones of the skull, no occipital exostoses,
and normal clavicular heads. Plasma cate-
cholamine ratios and the urine concentra-
tion of beta-2-microglobulin, biomarkers
often elevated in Menkes disease,22 were
normal.
and family B (Brazilian) (Figure 1A) demonstrated X-linked inher-

itance of a distal motor neuropathy phenotype (Figure 1B)

defined by decreased motor action potentials, normal nerve

conduction velocities, and limited or no sensory involvement.1

Both families are of European descent. A total of 31 individuals

from family A and 30 individuals from family B were examined

for neurological signs. Clinical, biochemical, and electrophysio-

logic findings in affected members of these families are summa-

rized (Table 1). The ethics review committees of all participating

institutions approved the study, and written informed consent

was obtained from subjects or parents of subjects less than

18 years of age.

Mutation Analysis
Genomic DNA was isolated from blood samples using standard

protocols or saliva samples using the Oragene Kit (DNA Genotek).

Mutation analysis was performed using high resolution melt

protocols established in our laboratory.9 PCR amplicons for muta-

tion scanning were designed to cover the coding exons and flank-

ing intronic sequences. Primers for all genes including the ATP7A
344 The American Journal of Human Genetics 86, 343–352, March 1
gene were designed using the LightScanner Primer Design

Software (version 1.0.R.84 Idaho Technology). Melt acquisition

was performed on a 96-well Light Scanner (Idaho Technology)

and the data analyzed with Light Scanner Call-IT 2.0 (Version

2.0.0.1331). Amplicons of differential melt curves were sequenced

using BigDye Terminator Cycle Sequencing protocols at the ACRF

Facility, Garvan Institute of Medical Research, Australia.

Cell Culture
Human fibroblast cells obtained by skin biopsies from affected

patients from family A and B, a Menkes disease patient with dele-

tion of ATP7A exons 20–23, a normal healthy male, and the fibro-

blast cell line GM3652 from the American Type Culture Collection

(Rockville, MD) were grown in Dulbecco’s modified Eagle’s

medium containing 10% (v/v) fetal bovine serum under humidi-

fied air at 37�C in 5% CO2. Experimental variations in culture

media or temperature are indicated in the text, figures, or legends

where relevant. Copper concentrations in fibroblast tissue extracts

were determined by inductively coupled plasma mass spectrom-

etry as previously described.20
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Table 1. Clinical, Neurophysiologic, and Biochemical Features in Study Subjects

Family/
Patient

Age
(yr)

Onset
(yr) Weakness Atrophy

Sensory
Exam DTRs

Median
CMAP
(mV)

Median
NCV
(m/s)

Tibial
CMAP
(mV)

Median
SNAP
(mV)

Serum Cu
(nmol/
liter)

A/III-4 52 ~50 Mild distal L > A Mild H Normal Absent
Achilles

NR NR NR NR NR

A/IV-1 22 ~4 Moderate
distal L, mild H

F, mild H Normal Absent
Achilles

4.3 57.6 1.9 13.3 NR

A/IV-2 43 ~15 Distal, L > A F, lower L, H Mild distal
toes, fingers

Absent
Achilles

2.62 61.5 2.80 26.6 15.4

A/IV-3 44 10 Distal, L > A F, Distal L, H Mild distal
lower L

Absent
Achilles

3.6 46.8 NR 17 NR

A/IV-6 62 61 Mild distal L Mild distal L, F Mod. distal L
vibratory loss

Absent
Achilles

NR NR 2.73 NR 13.2

A/IV-7 53 30 Mild L > A H, F Normal Normal 12.0 57.5 2.3 NR 12.5

A/IV-12 57 10 Distal L > A F, distal L,H Mild distal L
reduction

Normal 0.03 0 0 NR NR

A/V-1 16 13 Mild distal L None Normal Normal 6.3 64.7 13.5 NR NR

A/V-2 41 35 Distal L Mild F atrophy Mild distal L
sensory loss

Normal 2 NR NR NR NR

A/V-3 33 25 Mild H Mild H Normal Normal 8.0 56.8 4.8 NR NR

B/IV-2 26 8 Distal L Moderate distal A,L Normal Absent L 2.7 50.5 NR 25.8 15.3

B/IV-3 29 2 Distal L, A Severe distal L,F,H Normal Areflexic 0.33 41.2 0.07 66.0 13.4

B/V-1 5 Absent Absent Normal Normal NR NR NR 62.0 NR

Reference Ranges

R4 R50 R4 >20 11-23.622

Abbreviations are as follows: L, leg; F, foot; H, hand; A, arm; DTR, deep tendon reflexes; CMAP, compound motor action potential; SNAP, sensory nerve action
potential NR, not recorded. Reference ranges for neurophysiological measurements are from Clinical Neurophysiology.47
Real-Time Quantitative PCR
Total RNA was isolated using the QIAGEN RNeasy Mini Kit

(QIAGEN). cDNA was generated from 5 mg RNA with AffinityScript

reverse transcriptase (Stratagene). Quantitative real-time PCR was

performed with specific primers for ATP7A (50-GCTACCTTGTCAG

ACACGAATGAG-30 and 50-TCTTGAACTGGTGTCATCCCTTT-30)

and b-actin (50-GACAGGATGCAGAAGGAGATTACT-30 and 50-TG

ATCCACATCTGCTGGAAGGT-30) as previously described.21
Immunoblot Analysis
Total cell lysates were denatured by the addition of 53 loading

buffer with 5% b-mercaptoethanol (Quality Biological) and heating

at 50�C for 10 min. Samples (40 mg total protein) were electrophor-

esed through 4%–12% NOVEX Tris-glycerin SDS-poly-acrylamide

(Invitrogen)and transferred to polyvinylidine fluoride membranes.

Membranes were incubated at 4�C overnight in Tris-buffered saline

blocking buffer (0.9% (v/v) NaCl, 20 mM Tris/HCl [pH 7.5], 0.5%

SDS (v/v), 0.1% Tween 20 v/v) containing 5% (w/v) nonfat milk.

Blots were washed three times for 5 min each with Tris-buffered

saline, then incubated for 3 hr with a 1:1000 dilution of a rabbit

ATP7A antibody raised against the carboxy-terminal 18 amino

acids (NH2-DKHSLLVGDFREDDDTAL-COOH) of human ATP7A

(Antibody Solutions). After being washed, membranes were incu-

bated with anti-rabbit IgG horseradish peroxidase conjugate

(1:2000, Santa Cruz Biotechnology) for 1 hr at room temperature,

washed again, and developed with SuperSignal West Pico Lumi-

nol/Enhancer Solution (Pierce) according to the manufacturer’s
The Ameri
instructions. After membranes were stripped, incubation with

a primary mouse anti-b-actin monoclonal antibody conjugated

with horseradish peroxidase (Santa Cruz Biotechnology) was per-

formed so that b-actin could be detected; an enhanced chemilumi-

nescence reagent was used for development, as above.

Immunohistochemical Analysis and Confocal

Microscopy
Dermal fibroblasts were fixed on glass slides with 4% (w/v) parafor-

maldehyde. Blocking was performed with 3% (v/v) goat serum at

room temperature for 1 hr. Samples were incubated with the rabbit

anti-human carboxy-terminal ATP7A primary antibody (described

under Immunoblot Analysis) at a dilution of 1:2000 at 4�C over-

night; subsequently, Texas Red-labeled anti-rabbit IgG antibody

(Molecular Probes) was used as the secondary antibody for incuba-

tion at room temperature for 2 hr. Cells were viewed with a

confocal microscope (Nikon Eclipse, Nikon), and images captured

with Confocal Assistant software.

ATP7A Trafficking
Fibroblasts were grown in duplicate on 12 mm glass coverslips in

24-well trays and cultured at 30�C for 16 hr. The growth media

were replaced with either basal media (0.5�1 mM copper) or media

supplemented with 200 mM CuCl2 for 3 hr. Fibroblasts were then

fixed with 4% (w/v) paraformaldehyde in PBS for 10 min, permea-

bilized with 0.1% Triton X-100 in PBS for 10 min, and blocked

with 1% BSA and 0.25% gelatin in PBS at room temperature
can Journal of Human Genetics 86, 343–352, March 12, 2010 345



for 20 min. Cells were incubated with the sheep anti-human

N-terminal ATP7A antibody21 and a mouse monoclonal antibody

to the trans Golgi marker p230 (BD Transduction Laboratories)

diluted 1:1000 and 1:500, respectively, in 1% BSA at 4�C overnight

and then with the secondary antibody, Alexa Fluor 488 (green)

donkey anti-sheep IgG (Molecular Probes) (1:4000) or Alexa Fluor

594 (red) donkey anti-mouse IgG (Molecular Probes) at room

temperature for 1 hr. Confocal images were collected with a Leica

confocal microscope system TCS SP2 (Leica). As a semiquantitative

assessment, normal control and affected patient fibroblasts were

scored for ATP7A staining in the trans Golgi after copper exposure,

and chi square analysis was used for statistical comparison. The

trafficking experiments were performed in quadruplicate.
Yeast Complementation
Site-directed mutagenesis was performed as described19,22 for

generation of the P1386S ATP7A mutant allele. Plasmid DNA

from the yeast expression vector del20-23/pYES22 containing

bases 1–3800 of the ATP7A cDNA was double-digested with SpeI

and SacI so that a 523 bp fragment containing a KpnI restiction

site would be removed from the plasmid sequence. The fragment

was replaced by a 511 bp fragment without the KpnI site via

PCR of pYES DNA with primers 50GCGACTAGTACGGATTAGA

AGCCGCCGAGCGGGTGACAGCCCTCC-30 (forward) and 50-CG

CGAGCTCAATATTCCCTATAGTGAGTCGTATTACAG-30 (reverse);

T4 DNA ligase and an insert-to-vector ratio of 1.6:1 (35 fmoles:

22 fmoles) were used. The construct generated from this cloning

was named del20-23/pYES/sKs (single KpnI site). A 501 bp frag-

ment of the ATP7A cDNA then was excised from del20-23/pYES/

sKs via double digestion with KpnI and ApaI, replaced with

a 1201 bp fragment containing the P1386S mutation (C-to-T tran-

sition), and named P1386S/pYES/sKs. DNA fidelity was confirmed

by automated sequencing. Yeast complementation and timed

growth assays were carried out as previously described19,22 except

that plates and liquid media contained 100 mg/ml blasticidin.
Results

Gene Mutation Analysis

Thirty-three genes that underwent mutation analysis in

this study are shown in Figure 2A. High-resolution melt

analysis of ATP7A exon 22 showed differential subtractive

melt curves between affected male/carrier female and

normal male/noncarrier female groups in family A (Fig-

ure 2B). Sequence analysis of nine affected males identified

a transition mutation of c.4156C> T in exon 22 (Figure 2C,

family A), which predicts an amino acid substitution of

p.P1386S. The alteration was not present in seven unaf-

fected male members from family A. ATP7A was sequenced

in ten affected males from family B, and a transition muta-

tion of c.2981C > T in exon 15 was identified (Figure 2C,

family B), predicting a p.T994I amino acid substitution.

The alteration was not present in six unaffected males

from family B. The p.P1386S and p.T994I, alterations

were absent from 800 unrelated, ethnically matched con-

trol chromosomes. The documented mutations all occur

in the carboxyl half of the ATP7A protein (Figure 3A) and

are highly conserved (Figure 3B).
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P1386S ATP7A RNA and Protein Analysis

We used quantitative RT-PCR and immunoblotting to

determine whether mRNA and protein levels were altered

in P1386S fibroblasts. The level of mRNA expression was

not significantly changed (Figure 4A), and immunoblot

analyses of fibroblast protein extracts (Figure 4B) showed

a similar amount and size of the protein when these were

compared to normal controls.

Immunocytochemical and Biochemical Analyses

and Trafficking of P1386S ATP7A Protein

In cultured mammalian cells, ATP7A localizes to the trans

Golgi network in basal copper concentrations22,23 and

relocates to small vesicles and the plasma membrane

in cells exposed to elevated copper.23 Immunocytochemi-

cal analyses revealed correct trans Golgi localization of

ATP7A in fibroblasts cultured at 37�C under basal copper

conditions (Figure 4C, middle panel), whereas the steady-

state fibroblast copper levels in P1386S fibroblast cell lines

were intermediate between those in a normal control and

a classical Menkes disease patient: fibroblasts from IV-2

and V-3 from family A contained 214.36 mg Cu/g dry

weight 5 3.64 standard deviation (sd) and 118.08 mg Cu/g

dry weight 5 6.97 SD, respectively, versus 84.12 5 0.67 in

the GM3652 normal cell line and 540.34 5 19.45 SD in

the del ex20–23 fibroblasts from a patient with Menkes

disease22. Increased copper retention is characteristic of

cultured fibroblasts from patients with Menkes disease

and occipital horn syndrome,18 reflecting reduced capacity

for copper exodus across the plasma membrane.

When we cultured P1386S fibroblasts at 30�C to assess the

possibility of a conditional (temperature-sensitive) muta-

tion,24,25 we observed impaired ATP7A trafficking in

response to copper loading in these P1386S fibroblasts

compared to normal fibroblasts (Figure 4D). Under basal

copper conditions, the wild-type and mutant protein both

showed extensive colocalization with the trans Golgi

marker p230 (Figures 4D and 4Dh). After a 3 hr exposure

to 200 mM copper, wild-type ATP7A was completely absent

from the trans Golgi (Figure 4Dl), whereas the P1386S

mutant protein remained substantially colocalized with

the trans Golgi marker (Figure 4Dp). To confirm this obser-

vation, we scored 48 cells for the presence of ATP7A in the

trans Golgi after copper exposure. This semiquantitative

evaluation indicated that 24/27 (89%) P1386S cells retained

ATP7A in the trans Golgi, as compared to 3/21 (14%) normal

control cells (p < 0.0001). We also confirmed the presence

of this trafficking abnormality in cultured T994I fibroblasts

(Figure S1), which represents a delay in the expected move-

ment of ATP7A-laden vesicles from the trans Golgi network

to the plasma membrane after copper exposure.

Yeast Complementation Studies

We also employed a yeast complementation assay19,22 to

assess the capacity of the P1386S mutant allele to comple-

ment an S. cerevisiae copper-transport knockout, ccc2D.

This assay measures the capacity of human ATP7A to
2, 2010



Figure 2. Genetic Basis of X-linked Distal Motor Neuropathy
(A) Display of annotated genes in the interval between the markers DXS8046 and DXS8114; data are from the University of California
Santa Cruz (UCSC) Genome Browser (Human March 2006 Assembly; NCBI Build 36.1). Redundant genes are not shown, and the coding
region of genes formally excluded in family A are shaded. An asterisk denotes the ATP7A gene, which maps between PGAM4 and PGK1.
High-resolution melt analysis was used for scanning all genes except for HDAC8, RLIM, and PGAM4, which underwent sequence anal-
ysis.9

(B) Subtractive difference plot for affected/carrier and normal/noncarrier samples in family A for exon 22 of ATP7A. The differential
shape and grouping of affected/carrier and normal/noncarrier difference plots suggested that a DNA variant was segregating with the
distal motor neuropathy phenotype in this family.
(C) Sequence data in affected males, carrier females, and normal males for p.P1386S and p.T994I. An asterisk denotes the base change
resulting in missense mutations that segregate with distal motor neuropathy in the respective families. The GenBank sequences
NM_00052 and NP_000043.3 were used as the reference sequences for the ATP7A cDNA and the ATP7A protein, respectively. Mutations
are designated on the basis of numbering of the A in the ATG translation initiation site as þ1.
replace the function normally performed by the ATP7A

ortholog ccc2; specifically, this function is the delivery of

copper to Fet3, a copper-containing protein required for

high-affinity iron uptake.26 On copper- and iron-deficient

solid media, the P1386S allele complemented ccc2D at

22�, 25�, 30�, and 37�C, whereas the ATP7A deletion allele,

del ex20–23, did not (data not shown). To quantify the

relative amount of residual copper-transport activity, we

utilized a standard timed growth assay19,22,27–29 in copper-

and iron-deficient liquid media at the four temperatures.
The Ameri
The growth of ccc2D transformed with the P1386S allele

was less than wild-type growth at all temperatures (Fig-

ure 5). At 30�C, the standard optimal temperature for yeast

cell growth, the calculated copper-transport capacity of

P1386S in ccc2D during exponential phase growth was

70% relative to that in ccc2D transformed by the wild-

type ATP7A (Figure 5C). There was no further diminution

in P1386S residual functional activity relative to the wild-

type when the assay was performed at lower temperatures

(22�C and 25�C, Figures 5A and 5B). As expected, ccc2D
can Journal of Human Genetics 86, 343–352, March 12, 2010 347



Figure 3. Locations and Sequence Align-
ments of ATP7A Mutations Causing Distal
Motor Neuropathy
(A) Topological depiction of the p.T994I
and p.P1386S mutations in the ATP7A
copper-ATPase associated with distal
hereditary motor neuropathy.
(B) Alignment analysis of the p.T994I and
p.P1386S mutations for ATP7A orthologs
in different species. Amino acid positions
994 and 1386 are boxed.
transformed with the del ex20–23 ATP7A allele (Figure 5,

orange lines and triangles) grew poorly in the timed

growth assay at all temperatures.
Discussion

Our findings reveal a third clinical phenotype associated

with mutations in the ATP7A copper transporter gene,

which was shown previously to cause Menkes disease14–

16 and occipital horn syndrome.18 This new allelic variant

involves progressive distal motor neuropathy with mini-

mal or no sensory symptoms. Affected patients with the

distal motor neuropathy discussed here do not manifest

the severe infantile central neurological deficits observed

in Menkes disease, the signs of autonomic dysfunction

seen in occipital horn syndrome, the hair and connec-

tive-tissue abnormalities found in both conditions, or

any of the clinical biochemical features of those well-char-

acterized phenotypes.17–19,22 These findings highlight the

phenotypic distinction between this isolated distal motor
348 The American Journal of Human Genetics 86, 343–352, March 12, 2010
neuropathy and the syndromes previ-

ously associated with ATP7A muta-

tions. By comparison of the molec-

ular bases, Menkes disease is caused

by profound loss-of-function muta-

tions, including deletions, splice-site

mutations at canonical positions,

nonsense mutations, and missense

mutations that affect a critical func-

tional domain in ATP7A or induce

misfolding,14–16,25,28,30 whereas oc-

cipital horn syndrome is associated

with molecular defects that allow

considerable residual copper trans-

port, often via leaky splice-junction

mutations involving noncanonical

bases.18,19,30 In contrast, the missense

mutations we describe here do not

disrupt critical functional domains,

disturb proper splicing, or cause

reduced levels of ATP7A protein

(Figure 4B). They occur in exons 15

(p.T994I) and 22 (p.P1386S), loca-

tions in which ATP7A missense muta-
tions appear to be exceedingly rare.30 The phenomenon of

late, often adult-onset, distal muscular atrophy implies

that these mutations produce somewhat attenuated effects

that require years to provoke pathological consequences.

The aberrant ATP7A trafficking in P1386S and T994I fibro-

blasts, the copper-retention phenotype in P1386S fibro-

blasts that is intermediate between normal and classical

Menkes disease, and the partial complementation of the

ccc2D copper-transport knockout by the P1386S allele are

all consistent with this hypothesis.

It is known that individuals with acquired copper defi-

ciency due to excess zinc ingestion, malabsorption, gastric

bypass surgery, or nephrotic syndrome can develop myelo-

neuropathy involving a profound sensory ataxia that

improves or stabilizes in response to copper repletion.31–35

Signs of lower motor-neuron disease, including proximal

and distal muscle weakness and bilateral foot drops, have

also been reported in copper-deficient individuals.36 Taken

together with these reports, our molecular, clinical, and

biochemical findings suggest that motor neurons might be

particularly sensitive toperturbations incopper homeostasis.



Figure 4. Characterization of P1386S
ATP7A
(A) Quantitative RT-PCR showing ATP7A
mRNA levels from P1386S fibroblasts rela-
tive to control fibroblasts from a normal
individual. The error bars indicate stan-
dard deviation. Each sample was run in
triplicate.
(B) Immunoblot showing the proper size
(z178 kDa) and amount of ATP7A from
P1386S fibroblasts relative to a normal
control (fibroblast cell line GM3652).
A negative control (fibroblast protein
with deletion of exons 20–23 from a
patient with Menkes disease22) shows no
detectable ATP7A. Lower panel: beta-actin
control for loading.
(C) Immunocytochemistry for subcellular
localization of P1386S ATP7A at 37�C in
basal copper levels. Arrows show anti-
ATP7A signal (red) with a perinuclear dis-
tribution consistent with trans Golgi local-
ization in normal and P1386S fibroblasts.
No antibody signal is evident in a del
ex20–23 fibroblast cell. Cells were grown
in media with normal copper concentra-
tion (0.5 mM) at 37�C and immunostained
with an antibody against the carboxyl
terminus of ATP7A. The scale bar repre-
sents 10 mm.
(D) Effect of temperature and copper con-
centration on the intracellular localization
of ATP7A at 30�C. In 0.5 mM copper, both
wild-type (a and c) and P1386S mutant
(e and g) ATP7A (green in these panels)
show extensive colocalization with the
p230 trans Golgi marker (red in panels
b and f) overlay in c and g. In 200 mM
copper, the wild-type ATP7A shows traf-
ficking out of the trans Golgi (i) and shows
little localization with p230 (overlay in k).
In contrast, the mutant P1386S did not
show much movement out of the trans
Golgi (m), and extensive perinuclear
yellow remains, indicating colocalization
with the p230 marker (o). Further demon-
strating the difference in trafficking, cells
indicated by the yellow arrows were
enlarged and are shown in panels d, h, l,
and p. Panels d and h clearly show the
extensive areas of colocalization of both
the wild-type and P1386S ATP7A in 0.5 mM
copper. Panel l shows the complete traf-
ficking of ATP7A out of the trans Golgi;
only the red staining of p230 remains.
Panel p shows extensive areas of yellow,
indicating that much of the mutant
ATP7A remains in the trans Golgi. Photo-
graphs were taken with a 633 objective
lens on a Leica TCS SP2 confocal micro-
scope. The scale bar represents 40 mm.
The precise nature of such perturbations remains to be

elucidated. The abnormal trafficking of mutant ATP7A in

fibroblasts at 30�C raises the possibility that these variants

represent a new class of cold-sensitive mutations, although

clinical evidence of thermal sensitivity is not overtly

apparent in affected individuals from these families.8,9

A previously studied temperature-sensitive ATP7A
The Ameri
missense mutation involved abnormal intracellular locali-

zation due to protein misfolding, which was ameliorated at

a lower temperature (30�C).25 Because the P1386S and

T994I trafficking defect is clearly not improved at lower

temperatures (Figure 4D and S1), protein misfolding seems

unlikely to explain the impact of these two mutations.

The absence of dramatic temperature effects in the yeast
can Journal of Human Genetics 86, 343–352, March 12, 2010 349



Figure 5. Effects of Temperature on Yeast Complementation by P1386S ATP7A
For each of the temperatures noted ([A] 22�C, [B] 25�C, [C] 30�C, [D] 37�C), cell densities (OD600) of shaking liquid cultures were measured
at0, 2,4, and6 hr for theSaccharomyces cerevisiaecopper transportmutant, ccc2D transformed with thewild-type (WT) ATP7A allele (blue),or
ATP7A alleles harboring P1386S (red), a deletion of the ATP7A carboxyl-terminal four exons, del 20–23 (orange), and nontransformed ccc2D
(green). Error bars denote 51 standard deviation from the mean of quadruplicate OD600 measurements. The growth of ccc2D transformed
with the P1386S allele was less than that of ccc2D transformed with the wild-type allele at all temperatures tested. Growth of these two yeast
transformants was suboptimal at 22�C, 25�C, and 37�C compared to 30�C. At 30�C, P1386S complemented the ccc2D knockout strain at
70% of the wild-type rate. Residual copper transport was estimated from cell density at time points during exponential-phase growth
(4 hr and 6 hr). Ccc2D transformed with the deletion allele (orange) and nontransformed ccc2D (green) grew poorly at all temperatures.
complementation experiments is not surprising because

proper trafficking is not required for metalation of Fet3p,

the capacity for which is measured by this assay.26 Our

results revealed a modest loss of copper-transport function

(70% of wild-type) in this process for P1386S (Figure 5C).

We speculate that reduced conformational flexibility in

P1386S and T994I ATP7A impedes normal trafficking of

the protein and impairs copper transport into the secretory

pathway for incorporation into nascent cuproproteins.

Superoxide dismutase 1 (MIM 147450), cytochrome

c oxidase (MIM 516030), dopamine-beta-hydroxylase

(MIM 609312), and peptidyl-amidating monooxygenase

(MIM 170270) are cuproenzymes highly relevant to neuro-

logical function.37 Although gain-of-function missense

mutations in superoxide dismutase 1 are implicated in a

familial form of amyotrophic lateral sclerosis involving

upper as well as lower motor-neuron degeneration,38 the

ATP7A mutations we report presumably would reduce,

rather than exaggerate, activity of this enzyme. Even

slightly subnormal activities of certain copper enzymes

might contribute to distal motor neuropathy. For example,
350 The American Journal of Human Genetics 86, 343–352, March 1
chronic mild deficiency of cytochrome c oxidase, an inner

mitochondrial membrane enzyme containing two

subunits that bind copper,39 could gradually induce mito-

chondrial dysfunction in motor neurons.40

The requirement for ATP7A in normal axonal outgrowth

and synaptogenesis has recently been recognized.41 Anter-

ograde axonal ATP7A trafficking is induced by activation of

the N-methyl-D-aspartate receptor that binds glutamate

and might be associated with synaptic release of copper.42

Thus, possible alternative mechanisms for the distal motor

neuropathy in our patients include impaired axonal traf-

ficking, glutamate-mediated excitotoxicity, and altered

synaptic activity of ATP7A. Because the axons and syn-

apses of distal motor neurons extend a considerable dis-

tance from their cell bodies in the spinal cord, we speculate

that these neuronal elements might be autonomous from

their cell bodies in terms of requirements for ATP7A.

The presence of intracellular protein aggregates has been

described in many neurodegenerative diseases,37,38 and

abnormal inclusions have been defined for heterogeneous

forms of inherited distal motor neuropathy, typically
2, 2010



identified when mutant proteins were overexpressed in

mammalian cells.6,7,43–45 It will be useful to formally

exclude or confirm such effects for the ATP7A mutations

we report here.

Thespectrum ofgenes implicated in the causation of distal

motor neuropathy illustrates the diverse processes involved

in motor neuron physiology.4–7,43,46 The identification of

mutations in a gene essential to the homeostasis of trace

metals reveals a new component in this system and further

highlights the critical role of copper metabolism in neurode-

generation.37 Studies that explore and clarify the potential

mechanisms suggested by our findings are warranted and

might have relevance to other forms of motor-neuron

disease, including amyotrophic lateral sclerosis. Insights

concerning the functions of ATP7A in motor neurons might

lead to the development of rational treatments for this

newly discovered form of X-linked distal motor neuropathy

and other related disorders in which copper metabolism

plays a previously under-appreciated role.

Supplemental Data

Supplemental data include one figure and can be found with this

article online at http://www.cell.com/AJHG.
Acknowledgments

We thank the patients and family members for their participation

in this study. We thank Rabia Chaudhry and Alison Blake for their

assistance with cell cultures and Jose Centeno for fibroblast copper

measurements. This work was supported by grants from the Motor

Neuron Disease Research Institute of Australia, the National

Health and Medical Research Council of Australia, the Intramural

Research program of the National Institute of Child Health and

Human Development, the Methusalem project of the University

of Antwerp, the Fund for Scientific Research (FWO-Flanders), the

Medical Foundation Queen Elisabeth (GSKE), and the Interuniver-

sity Attraction Poles program (P6/43) of the Belgian Federal

Science Policy Office (BELSPO). J.B. and L.S. are supported by

PhD fellowships of the FWO-Flanders and the University of Ant-

werp, respectively. We thank Professor David Handelsman for

his useful constructive comments on the manuscript.

Received: December 4, 2009

Revised: January 17, 2010

Accepted: January 21, 2010

Published online: February 18, 2010
Web Resources

The URLs for data presented herein are as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/omim

University of California, San Francisco Genome Browser, http://

genome.ucsc.edu/
References

1. De Jonghe, P., Timmerman, V., and Van Broeckhoven, C.

(1998). 2nd workshop of the European CMT consortium:
The Ameri
53rd ENMC international workshop on classification and

diagnostic guidelines for Charcot-Marie-Tooth type 2 (CMT2-

HMSN II) and distal hereditary motor neuropathy (distal

HMN-Spinal CMT) 26–28 September 1997, Naarden, The

Netherlands. Neuromuscul. Disord. 8, 426–431.

2. Harding, A.E. (1993). Inherited neuronal atrophy and degen-

eration predominantly of lower motor neurons. In Peripheral

Neuropathy, P.J. Dyck, P.K. Thomas, J.W. Griffin, P.A. Low, and

J.F. Poduslo, eds. (Philadelphia: WB Saunders), pp. 1051–1064.

3. Irobi-Devolder, J. (2008). A molecular genetic update of

inherited distal motor neuropathies. Verh. K. Acad. Geneeskd.

Belg. 70, 25–46.

4. Antonellis, A., Ellsworth, R.E., Sambuughin, N., Puls, I., Abel,

A., Lee-Lin, S.Q., Jordanova, A., Kremensky, I., Christodoulou,

K., Middleton, L.T., et al. (2003). Glycyl tRNA synthetase muta-

tions in Charcot-Marie-Tooth disease type 2D and distal spinal

muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299.

5. Evgrafov, O.V., Mersiyanova, I., Irobi, J., Van Den Bosch, B.L.,

Dierick, I., Leung, C.L., Schagina, O., Verpoorten, N., Van

Impe, K., Fedotov, V., et al. (2004). Mutant small heat-shock

protein 27 causes axonal Charcot-Marie-Tooth disease and

distal hereditary motor neuropathy. Nat. Genet. 36, 602–606.

6. Irobi, J., Van Impe, K., Seeman, P., Jordanova, A., Dierick, I.,

Verpoorten, N., Michalik, A., De Vriendt, E., Jacobs, A., Van

Gerwen, V., et al. (2004). Hot-spot residue in small heat-shock

protein 22 causes distal motor neuropathy. Nat. Genet. 36,

597–601.

7. Puls, I., Oh, S.J., Sumner, C.J., Wallace, K.E., Floeter, M.K.,

Mann, E.A., Kennedy, W.R., Wendelschafer-Crabb, G., Vort-

meyer, A., Powers, R., et al. (2005). Distal spinal and bulbar

muscular atrophy caused by dynactin mutation. Ann. Neurol.

57, 687–694.

8. Takata, R.I., Speck Martins, C.E., Passosbueno, M.R., Abe, K.T.,

Nishimura, A.L., Da Silva, M.D., Monteiro, A. Jr., Lima, M.I.,

Kok, F., and Zatz, M. (2004). A new locus for recessive distal

spinal muscular atrophy at Xq13.1-q21. J. Med. Genet. 41,

224–229.

9. Kennerson, M., Nicholson, G., Kowalski, B., Krajewski, K., El-

Khechen, D., Feely, S., Chu, S., Shy, M., and Garbern, J.

(2009). X-linked distal hereditary motor neuropathy maps to

the DSMAX locus on chromosome Xq13.1-q21. Neurology

72, 246–252.

10. de Bie, P., Muller, P., Wijmenga, C., and Klomp, L.W. (2007).

Molecular pathogenesis of Wilson and Menkes disease: Corre-

lation of mutations with molecular defects and disease pheno-

types. J. Med. Genet. 44, 673–688.

11. La Fontaine, S., and Mercer, J.F. (2007). Trafficking of the

copper-ATPases, ATP7A and ATP7B: Role in copper homeo-

stasis. Arch. Biochem. Biophys. 463, 149–167.

12. Lutsenko, S., Gupta, A., Burkhead, J.L., and Zuzel, V. (2008).

Cellular multitasking: The dual role of human Cu-ATPases in

cofactor delivery and intracellular copper balance. Arch. Bio-

chem. Biophys. 476, 22–32.

13. Veldhuis, N.A., Gaeth, A.P., Pearson, R.B., Gabriel, K., and

Camakaris, J. (2009). The multi-layered regulation of copper

translocating P-type ATPases. Biometals 22, 177–190.

14. Chelly, J., Tumer, Z., Tonnesen, T., Petterson, A., Ishikawa-

Brush, Y., Tommerup, N., Horn, N., and Monaco, A.P.

(1993). Isolation of a candidate gene for Menkes disease that

encodes a potential heavy metal binding protein. Nat. Genet.

3, 14–19.
can Journal of Human Genetics 86, 343–352, March 12, 2010 351

http://www.cell.com/AJHG
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
http://genome.ucsc.edu/
http://genome.ucsc.edu/


15. Mercer, J.F., Livingston, J., Hall, B., Paynter, J.A., Begy, C.,

Chandrasekharappa, S., Lockhart, P., Grimes, A., Bhave, M.,

Siemieniak, D., et al. (1993). Isolation of a partial candidate

gene for Menkes disease by positional cloning. Nat. Genet.

3, 20–25.

16. Vulpe, C., Levinson, B., Whitney, S., Packman, S., and Gitsch-

ier, J. (1993). Isolation of a candidate gene for Menkes disease

and evidence that it encodes a copper-transporting ATPase.

Nat. Genet. 3, 7–13.

17. Kaler, S.G. (1994). Menkes disease. Adv. Pediatr. 41, 263–304.

18. Kaler, S.G., Gallo, L.K., Proud, V.K., Percy, A.K., Mark, Y., Segal,

N.A., Goldstein, D.S., Holmes, C.S., and Gahl, W.A. (1994).

Occipital horn syndrome and a mild Menkes phenotype asso-

ciated with splice site mutations at the MNK locus. Nat.

Genet. 8, 195–202.

19. Tang, J., Robertson, S., Lem, K.E., Godwin, S.C., and Kaler, S.G.

(2006). Functional copper transport explains neurologic

sparing in occipital horn syndrome. Genet. Med. 8, 711–718.

20. Lem, K.E., Brinster, L.R., Tjurmina, O., Lizak, M., Lal, S., Cen-

teno, J.A., Liu, P.C., Godwin, S.C., and Kaler, S.G. (2007).

Safety of intracerebroventricular copper histidine in adult

rats. Mol. Genet. Metab. 91, 30–36.

21. Ke, B.X., Llanos, R.M., Wright, M., Deal, Y., and Mercer, J.F.

(2006). Alteration of copper physiology in mice overexpress-

ing the human Menkes protein ATP7A. Am. J. Physiol. Regul.

Integr. Comp. Physiol. 290, R1460–R1467.

22. Kaler, S.G., Holmes, C.S., Goldstein, D.S., Tang, J., Godwin,

S.C., Donsante, A., Liew, C.J., Sato, S., and Patronas, N.

(2008). Neonatal diagnosis and treatment of Menkes disease.

N. Engl. J. Med. 358, 605–614.

23. Petris, M.J., Mercer, J.F., Culvenor, J.G., Lockhart, P., Gleeson,

P.A., and Camakaris, J. (1996). Ligand-regulated transport of

the Menkes copper P-type ATPase efflux pump from the Golgi

apparatus to the plasma membrane: a novel mechanism of

regulated trafficking. EMBO J. 15, 6084–6095.

24. Payne, A.S., Kelly, E.J., and Gitlin, J.D. (1998). Functional

expression of the Wilson disease protein reveals mislocaliza-

tion and impaired copper-dependent trafficking of the

common H1069Q mutation. Proc. Natl. Acad. Sci. USA 95,

10854–10859.

25. Kim, B.E., Smith, K., Meagher, C.K., and Petris, M.J. (2002).

A conditional mutation affecting localization of the Menkes

disease copper ATPase. Suppression by copper supplementa-

tion. J. Biol. Chem. 277, 44079–44084.

26. Askwith, C.C., de Silva, D., and Kaplan, J. (1996). Molecular

biology of iron acquisition in Saccharomyces cerevisiae. Mol.

Microbiol. 20, 27–34.

27. Donsante, A., Tang, J., Godwin, S.C., Holmes, C.S., Goldstein,

D.S., Bassuk, A., and Kaler, S.G. (2007). Differences in ATP7A

gene expression underlie intrafamilial variability in Menkes

disease/occipital horn syndrome. J. Med. Genet. 44, 492–497.

28. Tang, J., Donsante, A., Desai, V., Patronas, N., and Kaler, S.G.

(2008). Clinical outcomes in Menkes disease patients with

a copper-responsive ATP7A mutation, G727R. Mol. Genet.

Metab. 95, 174–181.

29. Kaler, S.G., Tang, J., Donsante, A., and Kaneski, C.R. (2009).

Translational read-through of a nonsense mutation in

ATP7A impacts treatment outcome in Menkes disease. Ann.

Neurol. 65, 108–113.
352 The American Journal of Human Genetics 86, 343–352, March 1
30. Hsi, G., and Cox, D.W. (2004). A comparison of the mutation

spectra of Menkes disease and Wilson disease. Hum. Genet.

114, 165–172.

31. Goodman, B.P., Bosch, E.P., Ross, M.A., Hoffman-Snyder, C.,

Dodick, D.D., and Smith, B.E. (2009). Clinical and electrodiag-

nostic findings in copper deficiency myeloneuropathy. J. Neu-

rol. Neurosurg. Psychiatry 80, 524–527.

32. Kelkar, P., Chang, S., and Muley, S.A. (2008). Response to oral

supplementation in copper deficiency myeloneuropathy. J.

Clin. Neuromuscul. Dis. 10, 1–3.

33. Kumar, N., Ahlskog, J.E., Klein, C.J., and Port, J.D. (2006).

Imaging features of copper deficiency myelopathy: A study

of 25 cases. Neuroradiology 48, 78–83.

34. Spain, R.I., Leist, T.P., and De Sousa, E.A. (2009). When metals

compete: a case of copper-deficiency myeloneuropathy and

anemia. Nat. Clin. Pract. Neurol. 5, 106–111.

35. Zara, G., Grassivaro, F., Brocadello, F., Manara, R., and Pesenti,

F.F. (2009). Case of sensory ataxic ganglionopathy-myelop-

athy in copper deficiency. J. Neurol. Sci. 277, 184–186.

36. Weihl, C.C., and Lopate, G. (2006). Motor neuron disease

associated with copper deficiency. Muscle Nerve 34, 789–793.

37. Desai, V., and Kaler, S.G. (2008). Role of copper in human

neurological disorders. Am. J. Clin. Nutr. 88, 855S–858S.

38. Bruijn, L.I., Miller, T.M., and Cleveland, D.W. (2004). Unravel-

ing the mechanisms involved in motor neuron degeneration

in ALS. Annu. Rev. Neurosci. 27, 723–749.

39. Shoubridge, E.A. (2001). Cytochrome c oxidase deficiency.

Am. J. Med. Genet. 106, 46–52.

40. Comi, G.P., Bordoni, A., Salani, S., Franceschina, L., Sciacco, M.,

Prelle, A., Fortunato, F., Zeviani, M., Napoli, L., Bresolin, N., et al.

(1998). Cytochrome c oxidase subunit I microdeletion in

a patient with motor neuron disease. Ann. Neurol. 43, 110–116.

41. El Meskini, R., Crabtree, K.L., Cline, L.B., Mains, R.E., Eipper,

B.A., and Ronnett, G.V. (2007). ATP7A (Menkes protein) func-

tions in axonal targeting and synaptogenesis. Mol. Cell. Neu-

rosci. 34, 409–421.

42. Schlief, M.L., Craig, A.M., and Gitlin, J.D. (2005). NMDA

receptor activation mediates copper homeostasis in hippo-

campal neurons. J. Neurosci. 25, 239–246.

43. Windpassinger, C., Auer-Grumbach, M., Irobi, J., Patel, H., Pe-

tek, E., Horl, G., Malli, R., Reed, J.A., Dierick, I., Verpoorten,

N., et al. (2004). Heterozygous missense mutations in BSCL2

are associated with distal hereditary motor neuropathy and

Silver syndrome. Nat. Genet. 36, 271–276.

44. Levy, J.R., Sumner, C.J., Caviston, J.P., Tokito, M.K., Rangana-

than, S., Ligon, L.A., Wallace, K.E., LaMonte, B.H., Harmison,

G.G., Puls, I., et al. (2006). A motor neuron disease-associated

mutation in p150Glued perturbs dynactin function and

induces protein aggregation. J. Cell Biol. 172, 733–745.

45. Maystadt, I., Rezsohazy, R., Barkats, M., Duque, S., Vannuffel, P.,

Remacle, S., Lambert, B., Najimi, M., Sokal, E., Munnich, A.,

etal. (2007). Thenuclear factor kappaB-activator genePLEKHG5

is mutated in a form of autosomal recessive lower motor neuron

disease with childhood onset. Am. J. Hum. Genet. 81, 67–76.

46. Dion, P.A., Daoud, H., and Rouleau, G.A. (2009). Genetics of

motor neuron disorders: new insights into pathogenic mech-

anisms. Nat. Rev. Genet. 10, 769–782.

47. Daube, J.R., and Rubin, D.I. (2009). Clinical Neurophysiology

(Oxford: Oxford University Press).
2, 2010


	Missense Mutations in the Copper Transporter Gene ATP7A Cause X-Linked Distal Hereditary Motor Neuropathy
	Introduction
	Material and Methods
	Subjects
	Mutation Analysis
	Cell Culture
	Real-Time Quantitative PCR
	Immunoblot Analysis
	Immunohistochemical Analysis and Confocal Microscopy
	ATP7A Trafficking
	Yeast Complementation

	Results
	Gene Mutation Analysis
	P1386S ATP7A RNA and Protein Analysis
	Immunocytochemical and Biochemical Analyses and Trafficking of P1386S ATP7A Protein
	Yeast Complementation Studies

	Discussion
	Acknowledgments
	Web Resources
	References


